Theoretical Physics - From Outer Space to Plasma cover logo
RSS Feed Apple Podcasts Overcast Castro Pocket Casts
English
Non-explicit
ac.uk
4.40 stars
41:08

Theoretical Physics - From Outer Space to Plasma

by Oxford University

Learn about quantum mechanics, black holes, dark matter, plasma, particle accelerators, the Large Hadron Collider and other key Theoretical Physics topics. The Rudolf Peierls Centre for Theoretical Physics holds morning sessions consisting of three talks, pitched to explain an area of our research to an audience familiar with physics at about second-year undergraduate level.

Copyright: © Oxford University

Episodes

What the Large Hadron Collider is telling us about the Higgs sector and its new interactions

44m · Published 16 May 11:21
Over the past two years, CERN’s Large Hadron Collider (LHC) has started to directly probe a qualitatively new class of interactions, associated with the Higgs boson. These interactions, called Yukawa interactions, are unlike any other interaction that we have probed at the quantum level before. In particular, unlike the electromagnetic, weak and strong forces, they have an interaction strength that does not come in multiples of some underlying unit charge. Yukawa interactions are believed to be of fundamental importance to the world as we know it, hypothesised, for example, to be responsible for the stability of the proton, and so the universe and life as we know it.

Why the world is simple - Prof Ard Louis

38m · Published 15 Feb 12:05
The coding theorem from algorithmic information theory (AIT) - which should be much more widely taught in Physics! - suggests that many processes in nature may be highly biased towards simple outputs. Here simple means highly compressible, or more formally, outputs with relatively lower Kolmogorov complexity. I will explore applications to biological evolution, where the coding theorem implies an exponential bias towards outcomes with higher symmetry, and to deep learning neural networks, where the coding theorem predicts an Occam's razor like bias that may explain why these highly overparamterised systems work so well.

Topology in Biology - Prof Julia Yeomans FRS

38m · Published 15 Feb 12:03
Active systems, from cells and bacteria to flocks of birds, harvest chemical energy which they use to move and to control the complex processes needed for life. A goal of biophysicists is to construct new physical theories to understand these living systems, which operate far from equilibrium. Topological defects are key to the behaviour of certain dense active systems and, surprisingly, there is increasing evidence that they may play a role in the biological functioning of bacterial and epithelial cells.

Welcome from the Head of the Physics Department

13m · Published 15 Feb 12:01
Ian Shipsey delivers the welcome speech for the Saturday Mornings of Theoretical Physics.

Entropy from Entanglement

42m · Published 03 Dec 14:49
Siddharth Parameswaran, Associate Professor, Physics Department. The usual picture of entropy in statistical mechanics is that it quantifies our degree of ignorance about a system. Recent advances in cooling and trapping atoms allow the preparation of quantum systems with many interacting particles isolated from any external environment. Textbook discussions of entropy — that invoke the presence of a “large” environment that brings the system to thermal equilibrium at a fixed temperature --- cannot apply to such systems. Sid Parameswaran will explain how “entropy” of subsystems of such isolated quantum systems arises from quantum entanglement between different parts of the system, and how their approach to thermal equilibrium is best described as the `scrambling’ of quantum information as it is transferred to non-local degrees of freedom.

Entropy: two short stories

39m · Published 03 Dec 14:45
John Chalker, Head of Theoretical Physics, gives a talk on entropy. Thermodynamics and statistical mechanics give us two alternative ways of thinking about entropy: in terms of heat flow, or in terms of the number of micro-states available to a system. John Chalker will describe a physical setting to illustrate each of these. By applying thermodynamics in a realm far beyond its origins, we can use the notion of an ideal heat engine to find the temperature of a black hole. And by applying combinatorial mathematics to hydrogen bonding, we can find the entropy of ice.

Entropy: Gaining Knowledge by Admitting Ignorance

52m · Published 03 Dec 14:43
Alexander Schekochihin, Professor of Theoretical Physics, gives a talk on entropy. When dealing with physical systems that contain many degrees of freedom, a researcher's most consequential realisation is of the enormous amount of detailed information about them that she does not have, and has no hope of obtaining. It turns out that this vast ignorance is not a curse but a blessing: by admitting ignorance and constructing a systematic way of making fair predictions about the system that rely only on the information that one has and on nothing else, one can get surprisingly far in describing the natural world. In an approach anticipated by Boltzmann and Gibbs and given mathematical foundation by Shannon, entropy emerges as a mathematical measure of our uncertainty about large systems and, paradoxically, a way to describe their likely behaviour—and even, some argue, the ultimate fate of the Universe. Alex Schekochihin will admit ignorance and attempt to impart some knowledge.

Networked Quantum Information Technologies

21m · Published 06 Jul 13:04
This talk reviews the developments in quantum information processing.

Quantum logic with trapped-ion qubits

25m · Published 06 Jul 12:07
This talk reviews testing and developing ideas in quantum computing using laser-manipulated trapped ions.

The ultimate limits of privacy and randomness...for the paranoid ones

54m · Published 06 Jul 12:05
This talk explains how qubits are used to represent numbers in a way that permits 'quantum-mechanical parallel' computing. We show how this can used to achieve fast factorisation of large numbers, and hence the breaking of current codes. We end by explaining how entangled pairs of particles can be used to provide an alternative and entirely secure cryptographic system.

Theoretical Physics - From Outer Space to Plasma has 103 episodes in total of non- explicit content. Total playtime is 70:37:37. The language of the podcast is English. This podcast has been added on November 25th 2022. It might contain more episodes than the ones shown here. It was last updated on May 17th, 2024 12:15.

Every Podcast » Podcasts » Theoretical Physics - From Outer Space to Plasma