In Our Time: Science cover logo
RSS Feed Apple Podcasts Overcast Castro Pocket Casts
English
Non-explicit
co.uk
4.60 stars
40:40

In Our Time: Science

by BBC Radio 4

Scientific principles, theory, and the role of key figures in the advancement of science.

Copyright: (C) BBC 2024

Episodes

Superconductivity

50m · Published 23 Feb 10:15
Melvyn Bragg and guests discuss the discovery made in 1911 by the Dutch physicist Heike Kamerlingh Onnes (1853-1926). He came to call it Superconductivity and it is a set of physical properties that nobody predicted and that none, since, have fully explained. When he lowered the temperature of mercury close to absolute zero and ran an electrical current through it, Kamerlingh Onnes found not that it had low resistance but that it had no resistance. Later, in addition, it was noticed that a superconductor expels its magnetic field. In the century or more that has followed, superconductors have already been used to make MRI scanners and to speed particles through the Large Hadron Collider and they may perhaps bring nuclear fusion a little closer (a step that could be world changing). The image above is from a photograph taken by Stephen Blundell of a piece of superconductor levitating above a magnet. With Nigel Hussey Professor of Experimental Condensed Matter Physics at the University of Bristol and Radbout University Suchitra Sebastian Professor of Physics at the Cavendish Laboratory at the University of Cambridge And Stephen Blundell Professor of Physics at the University of Oxford and Fellow of Mansfield College Producer: Simon Tillotson

The Challenger Expedition 1872-1876

51m · Published 22 Dec 10:15
Melvyn Bragg and guests discuss the voyage of HMS Challenger which set out from Portsmouth in 1872 with a mission a to explore the ocean depths around the world and search for new life. The scale of the enterprise was breath taking and, for its ambition, it has since been compared to the Apollo missions. The team onboard found thousands of new species, proved there was life on the deepest seabeds and plumbed the Mariana Trench five miles below the surface. Thanks to telegraphy and mailboats, its vast discoveries were shared around the world even while Challenger was at sea, and they are still being studied today, offering insights into the ever-changing oceans that cover so much of the globe and into the health of our planet. The image above is from the journal of Pelham Aldrich R.N. who served on the Challenger Surveying Expedition from 1872-5. With Erika Jones Curator of Navigation and Oceanography at Royal Museums Greenwich Sam Robinson Southampton Marine and Maritime Institute Research Fellow at the University of Southampton And Giles Miller Principal Curator of Micropalaeontology at the Natural History Museum London Producer: Simon Tillotson

The Fish-Tetrapod Transition

55m · Published 17 Nov 10:15
Melvyn Bragg and guests discuss one of the greatest changes in the history of life on Earth. Around 400 million years ago some of our ancestors, the fish, started to become a little more like humans. At the swampy margins between land and water, some fish were turning their fins into limbs, their swim bladders into lungs and developed necks and eventually they became tetrapods, the group to which we and all animals with backbones and limbs belong. After millions of years of this transition, these tetrapod descendants of fish were now ready to leave the water for a new life of walking on land, and with that came an explosion in the diversity of life on Earth. The image above is a representation of Tiktaalik Roseae, a fish with some features of a tetrapod but not one yet, based on a fossil collected in the Canadian Arctic. With Emily Rayfield Professor of Palaeobiology at the University of Bristol Michael Coates Chair and Professor of Organismal Biology and Anatomy at the University of Chicago And Steve Brusatte Professor of Palaeontology and Evolution at the University of Edinburgh Producer: Simon Tillotson

The Electron

49m · Published 27 Oct 09:15
Melvyn Bragg and guests discuss an atomic particle that's become inseparable from modernity. JJ Thomson discovered the electron 125 years ago, so revealing that atoms, supposedly the smallest things, were made of even smaller things. He pictured them inside an atomic ball like a plum pudding, with others later identifying their place outside the nucleus - and it is their location on the outer limit that has helped scientists learn so much about electrons and with electrons. We can use electrons to reveal the secrets of other particles and, while electricity exists whether we understand electrons or not, the applications of electricity and electrons grow as our knowledge grows. Many questions, though, remain unanswered. With Victoria Martin Professor of Collider Physics at the University of Edinburgh Harry Cliff Research Fellow in Particle Physics at the University of Cambridge And Frank Close Professor Emeritus of Theoretical Physics and Fellow Emeritus at Exeter College at the University of Oxford Producer: Simon Tillotson

The Death of Stars

58m · Published 07 Jul 09:15
Melvyn Bragg and guests discuss the abrupt transformation of stars after shining brightly for millions or billions of years, once they lack the fuel to counter the force of gravity. Those like our own star, the Sun, become red giants, expanding outwards and consuming nearby planets, only to collapse into dense white dwarves. The massive stars, up to fifty times the mass of the Sun, burst into supernovas, visible from Earth in daytime, and become incredibly dense neutron stars or black holes. In these moments of collapse, the intense heat and pressure can create all the known elements to form gases and dust which may eventually combine to form new stars, new planets and, as on Earth, new life. The image above is of the supernova remnant Cassiopeia A, approximately 10,000 light years away, from a once massive star that died in a supernova explosion that was first seen from Earth in 1690 With Martin Rees Astronomer Royal, Fellow of Trinity College, Cambridge Carolin Crawford Emeritus Member of the Institute of Astronomy and Emeritus Fellow of Emmanuel College, University of Cambridge And Mark Sullivan Professor of Astrophysics at the University of Southampton Producer: Simon Tillotson

Homo erectus

51m · Published 12 May 09:15
Melvyn Bragg and guests discuss one of our ancestors, Homo erectus, who thrived on Earth for around two million years whereas we, Homo sapiens, emerged only in the last three hundred thousand years. Homo erectus, or Upright Man, spread from Africa to Asia and it was on the Island of Java that fossilised remains were found in 1891 in an expedition led by Dutch scientist Eugène Dubois. Homo erectus people adapted to different habitats, ate varied food, lived in groups, had stamina to outrun their prey; and discoveries have prompted many theories on the relationship between their diet and the size of their brains, on their ability as seafarers, on their creativity and on their ability to speak and otherwise communicate. The image above is from a diorama at the Moesgaard Museum in Denmark, depicting the Turkana Boy referred to in the programme. With Peter Kjærgaard Director of the Natural History Museum of Denmark and Professor of Evolutionary History at the University of Copenhagen José Joordens Senior Researcher in Human Evolution at Naturalis Biodiversity Centre and Professor of Human Evolution at Maastricht University And Mark Maslin Professor of Earth System Science at University College London Producer: Simon Tillotson

Seismology

49m · Published 07 Apr 09:15
Melvyn Bragg and guests discuss the study of earthquakes. A massive earthquake in 1755 devastated Lisbon, and this disaster helped inspire a new science of seismology which intensified after San Francisco in 1906 and advanced even further with the need to monitor nuclear tests around the world from 1945 onwards. While we now know so much more about what lies beneath the surface of the Earth, and how rocks move and crack, it remains impossible to predict when earthquakes will happen. Thanks to seismology, though, we have a clearer idea of where earthquakes will happen and how to make some of them less hazardous to lives and homes. With Rebecca Bell Senior lecturer in Geology and Geophysics at Imperial College London Zoe Mildon Lecturer in Earth Sciences and Future Leaders Fellow at the University of Plymouth And James Hammond Reader in Geophysics at Birkbeck, University of London Producer: Simon Tillotson

In Our Time is now first on BBC Sounds

1m · Published 04 Mar 04:00
Looking for the latest episode? New episodes of In Our Time will now be available first on BBC Sounds for four weeks before other podcast apps. If you haven’t already, you can download the BBC Sounds app to listen to the In Our Time podcast first. BBC Sounds is also available in lots of other places. Find us on your voice device or smart speaker, on your connected TV, in your car, or at bbc.co.uk/sounds. The latest episode is available on BBC Sounds right now. BBC Sounds – you can find exclusive music mixes, live BBC radio and more podcasts like this one.

William and Caroline Herschel

50m · Published 11 Nov 10:15
Melvyn Bragg and guests discuss William Herschel (1738 – 1822) and his sister Caroline Herschel (1750 – 1848) who were born in Hanover and made their reputation in Britain. William was one of the most eminent astronomers in British history. Although he started life as a musician, as a young man he became interested in studying the night sky. With an extraordinary talent, he constructed telescopes that were able to see further and more clearly than any others at the time. He is most celebrated today for discovering the planet Uranus and detecting what came to be known as infrared radiation. Caroline also became a distinguished astronomer, discovering several comets and collaborating with her brother. With Monica Grady Professor of Planetary and Space Sciences at the Open University Carolin Crawford Institute of Astronomy, Cambridge and an Emeritus Fellow of Emmanuel College, University of Cambridge And Jim Bennett Keeper Emeritus at the Science Museum in London. Studio producer: John Goudie

Corals

51m · Published 28 Oct 09:15
Melvyn Bragg and guests discuss the simple animals which informed Charles Darwin's first book, The Structure and Distribution of Coral Reefs, published in 1842. From corals, Darwin concluded that the Earth changed very slowly and was not fashioned by God. Now coral reefs, which some liken to undersea rainforests, are threatened by human activity, including fishing, pollution and climate change. With Steve Jones Senior Research Fellow in Genetics at University College London Nicola Foster Lecturer in Marine Biology at the University of Plymouth And Gareth Williams Associate Professor in Marine Biology at Bangor University School of Ocean Sciences Producer Simon Tilllotson.

In Our Time: Science has 284 episodes in total of non- explicit content. Total playtime is 192:29:38. The language of the podcast is English. This podcast has been added on November 28th 2022. It might contain more episodes than the ones shown here. It was last updated on May 11th, 2024 14:11.

Similar Podcasts

Every Podcast » Podcasts » In Our Time: Science